289
Small RNAs – The Big Players in Developing Salt-Resistant Plants
Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G., & Schroeder, J. I., (2014). Plant salt-
tolerance mechanisms. Trends in Plant Science, 19(6), 371–379. https://doi.org/10.1016/j.
tplants.2014.02.001.
Deng, P., Wang, L., Cui, L., Feng, K., Liu, F., Du, X., Tong, W., et al., (2015). Global
identification of microRNAs and their targets in barley under salinity stress. PLoS One,
10(9), e0137990. https://doi.org/10.1371/journal.pone.0137990.
Deuschle, K., Funck, D., Forlani, G., Stransky, H., Biehl, A., Leister, D., Van, D. G. E., et al.,
(2004). The role of Δ1-pyrroline-5-carboxylate dehydrogenase in proline degradation. The
Plant Cell, 16(12), 3413–3425.
Devi, S. R., Madhav, M., Kumar, G. R., Goel, A., Umakanth, B., Jahnavi, B., & Viraktamath,
B., (2013). Identification of abiotic stress miRNA transcription factor binding motifs
(TFBMs) in rice. Gene., 531(1), 15–22. https://doi.org/10.1016/j.gene.2013.08.060.
Devkar, V., Thirumalaikumar, V. P., Xue, G. P., Vallarino, J. G., Tureckova, V., Strnad, M.,
Fernie, A. R., et al., (2020). Multifaceted regulatory function of tomato SlTAF1 in the
response to salinity stress. New Phytologist., 225(4), 1681–1698. https://doi.org/10.1111/
nph.16247.
Dezulian, T., Remmert, M., Palatnik, J. F., Weigel, D., & Huson, D. H., (2006). Identification
of plant microRNA homologs. Bioinformatics, 22(3), 359–360. https://doi.org/10.1093/
bioinformatics/bti802.
Ding, D., Zhang, L., Wang, H., Liu, Z., Zhang, Z., & Zheng, Y., (2009). Differential expression
of miRNAs in response to salt stress in maize roots. Annals of Botany, 103(1), 29–38.
https://doi.org/10.1093/aob/mcn205.
Ding, Y., Chan, C. Y., & Lawrence, C. E., (2004). Sfold web server for statistical folding
and rational design of nucleic acids. Nucleic Acids Research, 32(suppl_2), W135–W141.
https://doi.org/10.1093/nar/gkh449.
Dolata, J., Bajczyk, M., Bielewicz, D., Niedojadlo, K., Niedojadlo, J., Pietrykowska, H.,
Walczak, W., et al., (2016). Salt stress reveals a new role for ARGONAUTE1 in miRNA
biogenesis at the transcriptional and posttranscriptional levels. Plant Physiology, 172(1),
297–312. https://doi.org/10.1104/pp.16.00830.
Dunoyer, P., Melnyk, C., Molnar, A., & Slotkin, R. K., (2013). Plant mobile small RNAs. Cold
Spring Harbor Perspectives in Biology, 5(7), a017897. https://doi.org/10.1101/cshperspect.
a017897.
Dutta, T., Neelapu, N. R. R., Wani, S. H., & Surekha, C., (2020). Salt stress tolerance and
small RNA. In: Guleria, P., & Kumar, V., (eds.), Plant Small RNA (pp. 191–207). Academic
Press. https://doi.org/10.1016/B978-0-12-817112-7.00010-9.
Eamens, A. L., Smith, N. A., Curtin, S. J., Wang, M. B., & Waterhouse, P. M., (2009). The
Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand
selection from microRNA duplexes. RNA, 15(12), 2219–2235. https://doi.org/10.1261/
rna.1646909.
Fahlgren, N., Howell, M. D., Kasschau, K. D., Chapman, E. J., Sullivan, C. M., Cumbie, J.
S., Givan, S. A., et al., (2007). High-throughput sequencing of Arabidopsis microRNAs:
Evidence for frequent birth and death of MIRNA genes. PloS One, 2(2), e219. https://doi.
org/10.1371/journal.pone.0000219.
Fang, Y., Xie, K., & Xiong, L., (2014). Conserved miR164-targeted NAC genes negatively
regulate drought resistance in rice. Journal of Experimental Botany, 65(8), 2119–2135.
https://doi.org/10.1093/jxb/eru072.